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Abstract

The Schrödinger equation describing one-dimensional hindered rotation

of one CHO group against the other in glyoxal is solved variationally using

three sets of basis functions and an experimentally derived potential taken

from the literature. Reference states are defined by the free rotor potential,

a single well potential and a double well potential. Of the basis sets studied,

the double well reference states provide the most rapidly convergent reference

functions for solving the full hindered rotor Hamiltonian. In the case of the

free rotor and double well reference states, unusual patterns to convergence

were observed for the cis levels.
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I. INTRODUCTION

Many organic molecules exhibit the ability to interconvert between isomers by internal

rotation of functional groups about a chemical bond. This large amplitude ‘top versus

frame’ motion [1] is one of 3N − 6 vibrational degrees of freedom and commonly called

torsion or hindered rotation. As with all vibrational motions, hindered rotation is probed

spectroscopically to derive information about the potential energy surface. Spectroscopic

data can seldom be inverted directly to yield information about the atomic interactions, so a

functional form with adjustable parameters is often assumed for the potential function. The

potential surface is found acceptable when the transition frequencies calculated by solving

the vibrational Schrödinger equation with the model potential match the spectroscopically

determined frequencies.

One method of testing the model potential function against the spectroscopic data is

to solve the Schrödinger equation variationally [2], [3]. In a variational calculation, the

Hamiltonian operator is expressed in a truncated set of reference functions. The resulting

matrix is then diagonalized, yielding the eigenvalues and eigenfunctions of the Hamiltonian.

The eigenvalues are upper bounds to the eigenvalues of the infinite variational matrix [4].

The eigenfunctions are vectors linearly expanded on the reference functions.

The size of the variational matrix depends on the number of reference or basis functions

required to attain converged eigenvalues, so computational effort is minimized by using the

most rapidly convergent set of reference functions. In fact, a rapidly convergent basis set is

often a requirement in a multi-dimensional variational problem. Since the variational matrix

is usually constructed and diagonalized in memory, there is an upper limit on the basis size.

While this has little effect on the one-dimensional problem, the restriction on matrix size

can severely limit the number of converged levels obtainable in a multi-dimensional problem

[5]. Finding a rapidly convergent set of reference functions for each degree of freedom in a

multi-dimensional problem, therefore, can be critical to the success of the calculation. Fur-

thermore, the ability to interpret the wavefunction depends on the convergence properties
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of the basis set. In the one-dimensional problem, simple inspection of the eigenfunctions

yields the approximate quantum numbers used by experimentalists. In a multi-dimensional

problem, the assignments are made by citing the reference functions with the largest co-

efficients. This process is accurate only when each state is composed of a few dominant

reference functions. Assignments quickly become impossible in a slowly convergent basis

because then each state is composed of many reference functions of similar importance.

It is the aim of this work to find a rapidly convergent basis set for the one-dimensional

hindered rotation variational problem applied to a specific organic molecule: glyoxal. Using

a model potential function taken from the literature, we study the convergence properties of

the torsional energy levels calculated in three different basis sets. While the work is done on

a specific potential model in one dimension, we argue the results are useful in the context

of a multi-dimensional variational problem and applicable to any general hindered rotor

potential model. In the course of carrying out this work, we discovered some unexpected

features in the convergence patterns for levels calculated in two of the three basis sets.

II. MODEL POTENTIAL FUNCTION

Glyoxal, (CHO)2, is the simplest α−β dicarbonyl and possesses a low frequency torsion

vibrational mode corresponding to rotation about the C − C bond. The potential associ-

ated with a change in the torsion coordinate is characterized by two non-equivalent minima,

allowing the molecule to exist in either the trans or cis conformation. Many experimental-

ists have probed the potential surface including Butz, Krajnovich and Parmenter [6], who

spectroscopically determined most of the energy levels supported by the trans portion of the

potential as well as a level in the cis part of the potential.

Following the example of Lewis and coworkers [7], Butz and coworkers applied the vari-

ational method to solve the hindered rotor problem in one dimension using free rotor ex-

pansion functions and derived a torsional potential energy surface for glyoxal that matches

the experimental data [6]. The periodic potential takes the familiar form of a cosine Fourier
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series,

V =
1

2

6∑
n=1

Vn(1 − cos nτ) (1)

with parameter values (in cm−1) V1 = 1719 · 4, V2 = 1063 · 5, V3 = −53 · 2, V4 = −81 · 9,

V5 = 21 · 3 and V6 = 2 · 9. The potential used in the present calculations is defined by this

equation.

III. CALCULATION OF ENERGY LEVELS

The Hamiltonian operator for hindered rotation is constructed using the assumption

that the torsion mode is uncoupled from all the other vibrational modes in the molecule. In

addition, the Hamiltonian applies to the J=0 rotational state, and coupling between internal

and overall angular momentum of the molecule is neglected. The Hamiltonian for the fully

coupled vibrational problem and methods for determining its eigenvalues using local mode

calculations will be described in a subsequent publication [8].

Lewis, Malloy, Chao and Laane [7] reported the Hamiltonian for a potential written as

a Fourier expansion:

Ĥ = − d

dτ
B(τ)

d

dτ
+ V (τ) (2)

where V (τ) is the hindering potential defined by Equation 1 and B(τ) is the internal rotation

constant. This constant depends on the internal rotation coordinate, τ , due to structural

relaxation that occurs during motion along the torsion coordinate. It is known accurately

only for the energetically stable cis (τ = 180 deg) and trans (τ = 0 deg) isomers [6]. To

conform to the functional form of the potential function, the rotational constant is also

written as a Fourier series expansion,

B = B0 +
5∑

n=1

Bn cosnτ (3)

Durig, Bucy and Cole [9], in an earlier study of the glyoxal torsional surface, determined the

set of coefficients for the internal rotation constant (in cm−1), B0 = 4 · 213, B1 = −1 · 116,
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B2 = 0 · 421, B3 = −0 · 126, B4 = 0 · 040, and B5 = −0 · 015. Butz et al [6] used these

coefficients during the development of the torsional potential surface, Equation 1, and we

use this form in the present study.

To determine the energy levels and wave functions of the Hamiltonian, Equation 2,

the operator is written in matrix form using a set of basis functions ψk that span the

space and satisfy the appropriate boundary conditions. The set is usually chosen to be

the eigenfunctions obtained by analytically solving some component of the Hamiltonian,

called the reference Hamiltonian. For vibrational problems such as the one considered here,

this basis set is usually infinite and must be truncated at N functions. Expressing the full

Hamiltonian in this truncated representation leads to an N ×N matrix with elements,

Hj,k =
∫ 2π

0
ψ∗

j Ĥψkdτ (4)

Diagonalization of the matrix yields the N eigenvalues, En, and the corresponding eigen-

functions

φn =
N−1∑
k=0

Ck,nψk (5)

where n is the quantum number and the coefficients Ck,n are the elements of the transfor-

mation matrix.

If the basis functions possess symmetry properties, the variational matrix may be fac-

torized into smaller sub-blocks, each belonging to a different symmetry class. Although

the problem can be solved in basis functions possessing no particular symmetry properties,

computational effort is reduced by taking advantage of symmetry. In the case of the free

rotor reference functions, for example, using the cosine/sine forms of the functions to break

the problem into even/odd symmetry blocks requires storing and diagonalizing two N ×N

matrices rather than one 2N × 2N matrix constructed in the complex representation of free

rotor solutions (eimτ ).

In the present study, the Hamiltonian operator is expressed in three different basis sets.

Each basis set is obtained by analytically solving a component of the full Hamiltonian, the
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reference Hamiltonian, which is composed of the same kinetic energy term, B0
d2

dτ 2
, plus a

unique potential term. All expansion functions possess either even or odd parity.

Following the traditional method established by Lewis and coworkers [7], the first basis

set, V0, consists of the solutions to the free rotor problem. The reference potential V = 0

and the reference eigenstates are:

ψEven
0 = 1√

2π

ψEven
n = 1√

π
cos(nτ) n = 1, 2, 3...

ψOdd
n = 1√

π
sin(nτ) n = 1, 2, 3...

(6)

The other two basis sets used in this study are solutions to Mathieu’s differential equation

[10]. Using the potential function, 1
2
Vn(1−cos nτ ), and a change of variables, x = (nτ+π)/2,

the Schrödinger equation for internal rotation maps into Mathieu’s equation [11]. Solutions

come in two varieties of even/odd pairs; those periodic in π (T = π) and those periodic

in 2π (T = 2π). The solutions to Mathieu’s equation are known analytically and may be

calculated using computer code developed by Shirts [12].

The second basis set, V1, is obtained by solving Mathieu’s equation for the single well

reference potential defined by the first term in the full potential in Equation 1, 1
2
V1(1−cos τ).

In terms of the variable x = (τ + π)/2 and using subscripts to indicate those solutions with

the correct boundary conditions (periodic in π), the reference eigenstates are:

ψEven
2n = 1√

π
(2

∞∑
k=1

ck cos 2kx+ c0) n = 0, 1, 2...

ψOdd
2n+2 = 1√

π
(2

∞∑
k=1

ck sin 2kx) n = 0, 1, 2...
(7)

The third basis set, V2, is determined by solving Mathieu’s equation for the reference

potential defined by the second term of the full potential in Equation 1, 1
2
V2(1− cos 2τ ) . A

change of variables is not required because Mathieu’s equation is defined for this potential.

Both varieties of solution conform to the correct boundary conditions (periodic in 2π),

6



ψEven
2n = 1√

2π
(2

∞∑
k=1

ck cos 2kτ + c0) n = 0, 1, 2... T = π

ψOdd
2n+1 = 1√

2π
(2

∞∑
k=0

ck sin (2k + 1)τ ) n = 0, 1, 2... T = 2π

ψEven
2n+1 = 1√

2π
(2

∞∑
k=0

ck cos (2k + 1)τ) n = 0, 1, 2... T = 2π

ψOdd
2n+2 = 1√

2π
(2

∞∑
k=1

ck sin 2kτ) n = 0, 1, 2... T = π

(8)

The convergence properties of the eigenenergies of the Hamiltonian, expressed in each

basis set, are studied by varying the number of functions used in the expansion. For the

purpose of this paper, we assume an energy level is converged when the addition of more

basis functions to the truncated set causes less than a 0 · 01 cm−1 change in energy. The

accuracy of the calculation is confirmed by noting that the levels should converge to the

same value, regardless of which set of reference functions is used. The states labelled trans

have greater amplitude over the deeper minimum in the potential well. Similarly, cis states

have greater amplitude over the shallower potential minimum. Solutions with an equal

distribution of amplitude over the full range of torsion coordinate are labelled free. The

state is labelled even if φ(τ) = φ(−τ) and odd if φ(τ) = −φ(−τ).
We expect basis sets obtained by solving Mathieu’s equation (V1 or V2) to converge the

energy levels in fewer terms than the free rotor basis, at least for lower quantum numbers,

because these reference potentials include a component of the full torsional potential (see

Figure 1).

IV. RESULTS AND DISCUSSION

Table I shows the results of converging the hindered rotation energy levels of glyoxal to

within 0 · 01 cm−1. With the exception of the first few cis states, which will be discussed

separately, the levels up to n=40 quanta calculated in the Mathieu representations V1 and

V2 converge in a smaller basis set than those calculated in the free rotor representation, as

expected. The V1 single well reference potential and the V2 double well reference potential
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yield converged energy levels in approximately the same number of basis terms. The lowest

energy levels converge in Mathieu basis sets in less than half the number of terms required by

the free rotor basis. In particular, it requires only 5 and 6 terms to converge the ground state

energy in the V1 and V2 basis sets, respectively, compared to 15 terms in the free rotor basis.

Higher energy levels converge several basis terms earlier in the Mathieu representations.

High above the potential barrier, energy levels converge in essentially the same number of

terms for all three basis sets. We anticipate this last result since the doubly degenerate

free rotor functions are the solutions to the full hindered rotor problem and the Mathieu

problems in this high energy region.

Table II illustrates the patterns of convergence for the n=0 trans ground state level, the

n=8 trans excited level, and the n=15 cis ground state level. In all basis sets, the zero-point

level follows the usual pattern as guaranteed by Macdonald’s theorem [4]: as the basis size

increases, the nth eigenvalue decreases in value. In the V1 single well expansion functions, all

energy levels converge following the same unremarkable pattern and more or less in sequence

(see Table I). The trans ground state converges first and the higher states follow.

The first significant departure from the normal convergence pattern occurs for the n=8

eigenvalue calculated in free rotor and double well basis functions. Eigenvalues printed in

boldface type in Table II draw attention to the unusual pattern. The energy level appears to

converge first to the wrong value, E = 1731 · 28 cm−1 in 8 free rotor functions, for instance,

and then to converge many basis functions later to the correct value, E = 1035 · 41 cm−1

in 25 free rotor functions. Inspection of the ’wrong’ solution, plotted in the top of Figure

2, reveals the n=8 eigenstate is not the eighth excited trans state as expected, but rather

the converged n=15 cis ground state. In the free rotor basis set, the cis ground state level

converges more rapidly than any other level, including the zero-point level. As the more

slowly convergent levels drop down in value, the cis ground state level is pushed up the list

of eigenvalues until it reaches its final position at n=15.

All the cis levels lying below the potential barrier and calculated in the free rotor and dou-

ble well basis sets exhibit this unusual convergence pattern, but with an additional feature.
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Within 10 basis functions, the states closely resemble their fully converged counterparts,

but as the states change position in the list of eigenvalues, the energy fluctuates randomly

about the converged value. For the first excited cis level, these fluctuations are smaller

than the convergence criterion. The second excited state fluctuations occur on the order of

wavenumbers and the third excited state fluctuations are tens of wavenumbers. Although

these fluctuations make it impossible to determine convergence with the usual test, in no

way do they violate Macdonald’s theorem [4], which applies to eigenvalues identified only

by their order. Once a level assumes its final position in the list of eigenvalues, its energy

converges in the conventional pattern. We are unaware of previous reports of this unusual

convergence pattern in the case of a one-dimensional variational problem. Similar effects

have been observed in a fully coupled six-dimensional variational calculation carried out by

Bramley and Handy in 1992 [5].

Referring to the plot of the reference potentials in Figure 1, it is apparent why the cis

levels should converge rapidly in the free rotor and double well basis sets but not in the single

well basis set. It is easy to predict that only the V1 reference states lying above the single

well potential would have sufficient amplitude in the τ = π region to describe a localized cis

state. Similarly, it is apparent from a plot of the double well potential that a combination

of low-lying V2 reference states is able to describe a localized cis state. Low energy free

rotor reference functions (Equation 6) and double well reference functions (Equation 8)

have significant amplitude over the cis portion of the potential well, whereas the low energy

single well reference functions (Equation 7) have negligible amplitude in that region. For

this reason, both the single well and double well reference functions converge the trans states

equally well, but the free rotor and double well reference functions converge the cis states

much better than the single well functions. Considering all the energy levels, the double

well potential function provides the most rapidly convergent set of reference functions.

The eigenfunctions of the hindered rotor Hamiltonian fall into even or odd symmetry

classifications in any basis set, regardless of the symmetry characteristics of the expansion

functions. As shown in Table I, the eigenfunctions labelled trans alternate even and odd in
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parity. Similarly, the cis eigenfunctions also alternate in parity. In contrast, neighboring

eigenfunctions do not simply alternate in parity. The pattern is broken when the even

ground state cis function (n=15) converges just above (in energy) an even trans state. The

symmetry pattern changes with the introduction of the cis state to an even/odd odd/even

sequence. Within each pair of cis/trans solutions, as illustrated in Figure 3, one function is

even and the other odd.

An analysis of the symmetry along with the shape of the eigenstates provides enough

information to predict the spectroscopically allowed transitions [11]. Transitions cannot

occur from a trans to a cis state if the eigenfunctions are localized. The dotted lines in

Figure 4 indicate localized eigenfunctions exist up to quantum number n=23, just below

the barrier. Also, transitions cannot occur between states of the same symmetry. Thus, in

theory, glyoxal cannot absorb radiation to make a change from one rotational isomer to the

other when it occupies states in either conformation lower than n=23.

For the one-dimensional problem discussed here, it is assumed the torsion is independent

of the remaining 3N − 7 vibrational modes of the molecule. In reality, the torsional mode

interacts with other vibrational degrees of freedom and these interactions are included in the

Hamiltonian of the fully coupled multi-dimensional problem. It is reasonable to express the

wave function for the coupled problem in a basis composed of a sum of products of single

variable vibrational functions provided matrix elements of the correction Hamiltonian are

small and Fermi resonances unimportant.

In the specific case of glyoxal, we anticipate that matrix elements of the correction

Hamiltonian coupling torsion to other vibrational modes will be small and Fermi resonances

between torsion and any other mode unimportant. The fact that a one-dimensional torsion

potential model, such as Equation 1, reproduces the experimentally determined torsional

frequencies to high accuracy suggests that coupling of the torsional mode to other vibrational

modes is small. Furthermore, calculations done by R. Meyer [1] indicate the torsion interacts

with the ν12 CCO antisymmetric skeletal bending mode through Coriolis coupling in the

kinetic energy operator. Meyer found that adding the Coriolis coupling terms altered the

10



torsional and CCO bending transition frequencies by only a few per cent, but significantly

improved the agreement to the measured rotational frequencies. According to perturbation

theory, Coriolis forces are responsible for second-order perturbations between vibrations in

the absence of Fermi resonance [13]. Thus, in the particular case of glyoxal, a set of Mathieu

functions in the torsion coordinate should provide a suitable representation in the fully

coupled problem. For molecules in which the torsional coupling terms are small but Fermi

resonances are important, a basis composed of the natural orbital functions [14] may be

more appropriate.

V. CONCLUSION

We have compared the convergence properties of hindered rotor energy levels calculated

in three different sets of basis functions. Following the example of Lewis, Malloy, Chao and

Laane [7], we constructed the Hamiltonian operator for hindered rotation using a potential

energy function taken from the literature and then solved the Schrödinger equation varia-

tionally in a set of expansion functions defined by the free rotor potential function. With

the aid of Shirts’ computer code [12], we modified the method and solved the same problem

twice more, this time mapping it onto Mathieu’s differential equation. The first term in the

potential function defined the single well reference potential and the second term defined

the double well reference potential for the Mathieu problems.

Of the three basis sets studied, energy levels converged fastest in the double well reference

functions. The rapidly convergent cis levels in both the free rotor and double well basis sets

changed position in the order of eigenvalues as lower levels converged at slower rates. A

similar convergence pattern with regard to a multi-dimensional problem has been observed

in an earlier study by Bramley and Handy [5].

The best reference functions cause the energy levels to converge rapidly to a specified

accuracy. For the torsional degree of freedom and the model potential function studied

here, we found the best reference functions of those studied arose from solving Mathieu’s
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differential equation for a double well potential. In any general hindered rotation problem, a

set of Mathieu reference functions should always outperform the free rotor functions because

the reference Hamiltonian contains some portion of the full potential. In the context of a

multi-dimensional variational problem in which the coupling terms in the Hamiltonian are

small and Fermi resonances unimportant, using the most rapidly convergent basis set in each

degree of freedom is essential to obtaining converged eigenvalues and assigning quantum

numbers.
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FIG. 1. Potential energy plotted as a function of the torsion coordinate. (a). The full torsional

potential energy surface defined by Equation 1. (b). The single well reference potential energy

surface. (c). The double well reference potential energy surface. V=0 for the free rotor reference

potential energy surface.
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FIG. 2. The n=8 solution to the hindered rotor problem as defined by the Hamiltonian in

Equation 1 plotted as a function of the torsion coordinate. Results are given for the double well

(V2) basis set with N=8 and N=20 members. The upper plot shows that the solution obtained using

8 double well reference functions is the converged n=15 ground state cis function, E8 = 1731 · 28

cm−1. The lower plot shows the ‘true’ n=8 solution, converged using 20 double well functions,

E8 = 1035 ·39 cm−1. Similar wavefunctions are obtained using N=9 and N=25 free rotor functions.
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FIG. 3. Pairs of solutions to the Schrödinger equation defined by the Hamiltonian in Equation

2 plotted as a function of the torsion coordinate. The trans solutions are arranged in the left

column and the cis solutions in the right column. Each member of the trans/cis pair (shown as

a row) possesses different parity. The solutions begin sharing amplitude over both minima of the

potential surface beginning with the n=23 and n=24 pair. With increasing quantum number, the

pairs gradually lose trans/cis character and separation in energy. At very high quantum numbers,

the solutions are the doubly degenerate free rotor functions.
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FIG. 4. In (a) the full torsional potential energy surface of Equation 1 is plotted as a function

of the torsion coordinate with the energy levels inscribed by horizontal lines. Dotted lines signify

an eigenstate with negligible amplitude in that region of the potential energy surface. In (b) the

same function is plotted with the energy region between 1500 and 2250 cm−1 enlarged.
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TABLES

TABLE I. Converged energies and number of expansion functions required in each basis set.

n En(cm−1) V0 V1 V2 Symmetry Isomer

0 63·83 15 5 6 even trans

1 190·55 16 6 6 odd trans

2 315·73 18 8 10 even trans

3 439·43 19 10 11 odd trans

4 561·68 21 12 14 even trans

5 682·48 21 14 15 odd trans

6 801·76 23 16 17 even trans

7 919·44 23 17 18 odd trans

8 1035·39 25 19 20 even trans

9 1149·46 25 19 20 odd trans

10 1261·43 27 21 22 even trans

11 1371·08 26 21 21 odd trans

12 1478·09 28 23 23 even trans

13 1582·08 28 23 23 odd trans

14 1682·60 29 25 25 even trans

15 1731·28 9 18 8 even cis

16 1778·97 29 24 24 odd trans

17 1822·13 9 17 8 odd cis

18 1870·30 30 26 26 even trans

19 1911·90 25 19 22 even cis

20 1954·91 30 25 25 odd trans

21 1995·46 27 22 24 odd cis

22 2028·59 31 27 27 even trans

23 2070·36 30 26 26 even cis

24 2088·53 30 26 26 odd trans

25 2148·15 30 26 26 odd cis

26 2153·73 32 27 27 even trans

27 2237·69 32 28 28 even cis

28 2238·61 31 27 27 odd trans

29 2339·17 32 28 28 odd free

30 2339·27 33 29 29 even free

31 2452·00 33 29 29 even free

32 2452·00 33 29 29 odd free

33 2575·44 33 29 29 odd free

34 2575·44 34 30 30 even free

35 2708·93 34 30 30 even free

18



36 2708·93 35 31 31 odd free

37 2852·08 35 31 31 odd free

38 2852·08 36 32 32 even free

39 3004·61 35 32 31 even free

40 3004·61 36 33 32 odd free
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TABLE II. Calculated energy levels for n=0, n=8, and n=15 as a function of basis set size,

Nbasis. The basis sets are factorized into odd and even sub-sets, so that the state E8 first appears

with a set of 5 even states and E15 with a set of 8 odd states.

E0 E8 E15

Nbasis V0 V1 V2 V0 V1 V2 V0 V1 V2

1 1336·00 76·06 903·65
2 583·22 65·36 64·91
3 291·93 64·03 64·79
4 176·48 63·86 63·85
5 122·26 63·83 63·84 2002·83 1348·92 1975·90
6 94·24 63·83 1943·41 1203·48 1918·03
7 79·20 1861·76 1125·70 1731·31
8 71·19 1731·35 1082·55 1731·28 2145·52 2065·21 2495·94
9 67·10 1731·28 1059·11 1731·28 2140·98 2031·74 2178·77
10 65·16 1731·28 1046·94 1201·31 2089·97 1968·60 2118·10
11 64·32 1629·65 1040·95 1168·42 2027·64 1926·85 1995·87
12 63·99 1487·48 1038·13 1109·68 1995·55 1888·17 1995·04
13 63·88 1366·63 1036·94 1075·92 1994·99 1854·09 1951·76
14 63·84 1268·22 1036·36 1054·03 1967·74 1773·24 1855·96
15 63·83 1191·01 1035·86 1042·53 1911·90 1739·51 1822·13

16 1132·94 1035·58 1037·57 1848·87 1731·68 1822·13

17 1091·65 1035·46 1035·90 1822·13 1731·30 1822·13

18 1064·55 1035·41 1035·48 1822·13 1731·28 1766·41
19 1048·64 1035·39 1035·40 1822·13 1731·28
20 1040·56 1035·39 1794·81
21 1037·11 1753·03
22 1035·88 1731·28
23 1035·51
24 1035·41
25 1035·39
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